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Abstract 
 

This paper describes an iterative procedure for performing second order geometric 
non-linear analysis using a basic linear structural program. The advantage of this 
procedure is that it can be applied by a user of the computer program without having 
to modify the internal workings of the program. Therefore, non-linear analysis is now 
within reach of any engineer using a linear finite element program. This iterative 
procedure can also be used to predict the critical buckling load quickly without having 
to perform repeated load increments and without having to assume the effective 
buckling length. 
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1.   Introduction 
 
Linear Finite Element programs perform a first order analysis assuming that the properties of the 
structure are constant and that deflections do not have any effect on the structural behaviour. 
However, in some cases, the deflection of the structure can have a goemetric second order effect 
on the behaviour of the structure, which is not captured by the linear first order analysis.  
 
This type of geometric non-linearity can be analysed with a linear structural analysis program using 
an iterative procedure as described in this paper.  
 
 
2.   Second Order Deflection 
 
 
 
 
 
 
 
 
 
In a normal linear computer analysis, the output deflected shape is different from the input geometry 
(fig.1). The structural loads acting on this difference is what causes an additional 2nd order deflection.  
This additional deflection ! is proportional to the axial load and the original deflection "1 :-  
 
   ! = kP"1 = K"1#.. eqn. (1)  
 
We can use the computer to calculate this additional deflection ! by running the analysis again using 
the same loads acting on the deflected shape of the structure as the input. The second analysis gives 
an incremental deflection to the structure and thus a new deflected shape. This gives a better 
evaluation of the deflected shape of the structure, but may still contain unbalanced internal forces if 
the output shape is still not equal to the input shape.  
 

Fig. 1 - Second Order Deflection 
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We now run a third analysis using the same loads and the new deflected shape as the input. Again we 
have a different deflected shape. We notice that the difference between the new shape and the 
previous one is less than before. By repeatedly analyzing the structure using the revised deflected 
shape, we eventually reach a stage where the output deflected shape and matches the input shape. 
The iterative procedure has thus calculated the geometric second order deflection of the structure.  
 

 

 

 

 

 

 

 

 

 

 

 

3.   Analysis Procedure 
 
Implementation of the procedure is very simple. Essentially the procedure consists of simply 
running the analysis, adding the computed deflections to the original (undeflected) geometry, and 
re-running again until the computed deflections for successive runs converge. Computations can 
be easily done by cutting and pasting from the finite element program to a spreadsheet 
 
1. First make a normal analysis which gives the first order linear deflection "1. 
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2. Then add "1 to the original geometry and run again to get a new deflection "2. This 
deflection is measured from the original geometry of the structure 

"2 = "1 + K"1 
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3. Add "2 to the original geometry and run to get "3. Again the deflection is measured from 
the original geometry. 

"3 = "2 + K
2 
"1  

    = "1 + K"1 + K
2 
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4. Repeat until there is negligible change between deflections "n and "n-1 for successive runs. 

The final "n is the second order deflection taking into account the geometric non-linear 
effects.  
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4.   Interpreting Results 

 
This method captures the overall second order behaviour of the structure (P-BIG DELTA). The second 
order behaviour of individual members in between joints (P-small delta) is not captured. Therefore, to 
study individual members, they should be sub-divided into several shorter components.  

 
 
 
For successive iterations, the incremental deflections !i and !i-1 are related by a ratio K = !i / !i-1. This 
ratio K can be considered as the geometric effect that the deflection of the structure has on the 
subsequent deflection. The value and rate of change of K with successive iterations gives information 
on the second order behaviour of a structure. 
 
For pure buckling, the ratio K between incremental deflections for successive iterations is constant.  If 
the initial deflection is "1, then the subsequent incremental deflections are K"1, K

2
"1, K

3
"1, K

4
"1 etc. 

(fig. 2). The magnitude of K determines the rate at which successive iterations will converge to the 
final value. Itf the structure is stable, K < 1. If K = 1, then the critical buckling load has been reached, 
and the 2

nd
 order deflection goes to infinity. 

 
The total deflection after n iterations is "n = "1 (1 + K + K

2
 + K

3
#+ K

n-1
) etc. 

After many iterations, "% $ "1 / (1 - K)  
This is the same as predicted by classical beam-column theory:-  "% = "1 / (1 – P / Pcrit) 
Thus K = P / Pcrit. i.e. the proportional factor K is equal to the ratio of the applied axial load to the 
critical buckling load.  
 

In fig. 3, the second order deflection is plotted against total deflection for successive iterations. The 
relationship between incremental deflections for successive iterations and the total deflection vs the 
first order deflection can be seen graphically. 
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5.   Rigid Body Displacement 
 
For many structures, the plot of the second order vs total deflection does not always cross the origin at 
zero. There appears to be an initial displacement D which does not influence the second order 
deflection. (Fig. 4) 
 

 
 
 
 
This rigid body displacement D can be visualized in the example of a beam column resting on spring 
supports. (Fig. 5) In this case, the entire beam moves laterally by a distance D, and this D has no 
effect on the second order behaviour of the system. 
 
 

 
 
 
 
For lateral deflection of members under axial load, the value of K remains constant after adjustments 
are made for the rigid body displacement D. There are other modes of 2

nd
 order behaviour such as the 

effect of lateral loads on axial deflections where K may not be constant. By studying the behaviour of 
the multiplier K over successive iterations, much information can be gleaned about the 2nd order non-
linear behaviour of the structure. This can be a scope for interesting further research on second order 
behaviour of structures. 
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Fig. 5 – Rigid Body Displacement of Beam on Spring Supports 
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6.   Prediction Of Buckling Load 
 
The ratio K between incremental deflections for successive iterations can be used to predict the critical 
axial buckling load Pcrit on the structure. Since K = P / Pcrit, the critical buckling load Pcrit = P / K. 
Therefore, it is possible to directly calculate the critical buckling load from the applied load P once K is 
obtained. It is not necessary to increment the applied load P to get the buckling load, since K is 
constant for pure buckling.  There is also no need to assume an effective buckling length, as the 
critical buckling load Pcrit is computed from the applied load and K. 
 
 

 
 
 
Fig. 6 shows an analysis of an axially loaded beam with a central spring support. By varying the spring 
stiffness, the critical axial buckling load will be changed. Using this procedure, one second-order 
analysis was made for each value of spring stiffness to calculate the critical buckling loads.  
 
The results are normalized against the Euler buckling load Pe = &

2
EI / L

2
 and plotted in order to 

compare with the theoretical analysis found in Timoshenko
2
 (fig. 7). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 

 
 Fig. 7 – Comparison with Fig. 2-26 of Timoshenko’s “Theory of Elastic Stability” 

There is a good correlation between the results of the analysis and Timoshenko’s theoretical calculations. 
 

EFFECT OF CENTRE SPRING STIFFNESS

Ks K 1/1-K Pcrit = P/K Ks*L/Pe Pcrit/Pe

0 0.589 2.43 169.8 0.0 1

0.05 0.369 1.58 271.2 2.9 1.60

0.07 0.321 1.47 311.2 4.1 1.83

0.1 0.270 1.37 370.3 5.9 2.18
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0.25 0.155 1.18 644.3 14.7 3.80
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1 0.003 1.00 37933.3 58.9 223.43

Fig. 6 – Axially Loaded Beam with Central Spring Support  

P P

Ks

Effect of centre spring stiffness on Pcrit

0.00

1.00

2.00

3.00

4.00

0 2 4 6 8 10 12 14 16

Centre spring stiffness Ks*L/Pe

P
c
ri

t/
P

e



7.   Skewed Arch Roof Structure 

 
 

A second order analysis was made on the roof structure shown in fig. 8 using the iteration method 
described and the results compared with an independent checker’s analysis using SAP2000 as well 
as an in-house analysis using Multiframe4D non-linear. The analysis results are similar with all three 
programs. The iterative procedure gives very similar results to the conventional Newton-Raphson 
method, and can be used for complicated structures as well as simple beam-columns.  
 
This structure demonstrates a non-linear behaviour that is quite different from the linear one. The 2

nd
  

order analysis converges quite rapidly as shown in fig. 9. The movements predicted by non-linear 
analysis correlate well with the movements observed in a physical scale model constructed from wires 
and brass tubing. K will vary at different points on the structure, depending on the second order effect 
of a particular loading on the point on the structure (fig. 10). Certain parts of a structure with larger 
values of K will be more prone to buckling than others.  

Main Arch

Ø508x12.5

Lens Truss

Ø193.7x12.5

Hangers

M30

Arch Tie

3xM64

Hanger

Longitudinal Tie

Ø139.7x10

Lens Longitudinal Tie

Ø193.7x12.5

Column

Ø508x12.5

Skew Force-Balanced Arch Structure with Radial Hangers
Fig. 8 – Skewed Arch Roof Structure  
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8.   Comparison With Conventional Newton-Raphson Iteration 
 
 
A common algorithm for calculating second-order behaviour in commercially available structural 
analysis programs uses the Newton-Raphson type of iteration. The table below compares the new 
method with the conventional method.  

Conventional Method This Method 

Additional Deflection at each Iteration Total Deflection at each Iteration 

Deflections of the structure cause an imbalance in 
the internal forces  

Structural forces acting on deflections of the 
structure cause additional (2nd order) deflections 
on the structure 

The unbalanced forces are applied on the 
deflected structure to calculate additional (2nd 
order) deflections 

 

The total deflection (including the additional 
deflection) is calculated by re-analyzing the 
structure with the deflected geometry 

 

This is repeated until the additional deflections 
converge to zero. 

 

This is repeated until the computed total 
deflected shape converges with the input 
geometry. 

 

Manipulation of the computer program’s internal 
matrices is required. Therefore, the method 
cannot be implemented by a normal user of the 
linear analysis program. 

 

No internal manipulation of the structural forces 
or matrices is necessary. All that is required is to 
adjust the input geometry of the subsequent 
runs. Therefore, it can be done by an ordinary 
user of a linear finite element program without 
having to revise the internal workings of the 
program itself. 

 

Red dotted line shows force vs deflection for 
successive iterations with conventional method 

 

 Green dotted line shows force vs deflection for 
successive iterations with this method 
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9.   Conclusions 
 

 

A method has been developed for performing second order geometric non-linear analysis using a 
basic linear structural program. This puts non-linear analysis within reach of any engineer with access 
to a linear structural analysis program. 
 

• This method employs successive runs of the linear analysis using the same loads acting on the 
deflected geometry of the structure. It works on the principle that the loads acting on the 
deflections of a structure cause additional (2nd-order) deflections that can be computed by re-
analyzing the structure with the deflected geometry. 

 

• The method accurately calculates the behaviour of a simple beam column on spring supports as 
predicted by buckling theory. It has also been used for complex structures and gives similar 
results to conventional programs which use the Newton-Raphson type of iteration method. 

 

• As a by-product of this method, the rate of change of deflections computed for successive 
iterations can be used to predict the critical buckling load on the structure without having to 
increment the applied load. This technique has been verified with the theoretical solution for  
simple buckling cases. 

 

• The study of the incremental deflections between successive iterations can yield significant 
information about the non-linear behaviour of the structure and this is a scope for further 
research. 
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APPENDIX - Proof Cases 
 
To validate the method, the following cases were run and the results compared with theory:- 

Case 1. Beam-column buckling 
For a steel pipe 168mm diameter x 5mm thick, 10 m long divided into 10 segments, the buckling load 
using this method was 170.3k and compares well with the calculated Euler buckling load of 168.9kN. 

Case 2. Beam-column with spring supports at both ends 
As above, but with spring supports to introduce rigid body translation into the system. Computed 
buckling load is the same as above. Lateral deflection under self weight and axial compression of 
100kN is computed to be 46.0mm after 10 iterations, compared with the theoretical value of 46.6mm. 
Rigid body translation under self-weight is computed as 9.86mm vs theoretical 9.83mm. 

Case 3. Tension case 
As above, but with a tension load of 100kN. Convergence rate is the same and total lateral deflection 
is computed to be 19.25mm vs theoretical 19.28mm, with the same rigid body translation as above. 

Case 4. Divergent tension 
As above, but tension increased. At >170kN tension, which is equal in magnitude to the Euler buckling 
load, the computation failed to converge. 

Case 5. Beam-column with centre spring support  
Case 1 was run with a spring support at the mid point of the beam. Results compared with 
Timoshenko’s theoretical analysis. 

Case 6. Complex structure 
The procedure was used on a complex skewed arch roof structure. Results for 2

nd
 order analysis are 

similar to that obtained using commercial programs SAP2000 and Multiframe4D. 


